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Principal component analysis (PCA), also known as proper orthogonal decomposition or
Karhunen}Loève transform, is commonly used to reduce the dimensionality of a data set
with a large number of interdependent variables. PCA is the optimal linear transformation
with respect to minimizing the mean square reconstruction error but it only considers
second-order statistics. If the data have non-linear dependencies, an important issue is to
develop a technique which takes higher order statistics into account and which can eliminate
dependencies not removed by PCA. Recognizing the shortcomings of PCA, researchers in
the "eld of statistics and neural networks have developed non-linear extensions of PCA. The
purpose of this paper is to present a non-linear generalization of PCA, called VQPCA. This
algorithm builds local linear models by combining PCA with clustering of the input space.
This paper concludes by observing from two illustrative examples that VQPCA is
potentially a more e!ective tool than conventional PCA.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Principal component analysis (PCA), also known as proper orthogonal decomposition or
Karhunen}Loève transform, is a ubiquitous statistical technique for data analysis. The
applications of this procedure are extensive, e.g., modelling of turbulence [1] and image
processing [2]. PCA is now emerging as a useful tool in the "eld of structural dynamics. For
instance, it has been applied to study the dimensionality of a system [3], to control torsional
vibrations in long strings [4], to build reduced order models [5, 6], and to identify and
update non-linear systems [7}9].
The key idea of PCA is to represent a data set in terms of a minimum of variables while

preserving most of the information present in the data set. PCA de"nes a projection matrix
made up of r vectors which are the eigenvectors of the covariance matrix associated with the
r largest eigenvalues. The data are then projected onto the r-dimensional subspace of their
embedding space, so that the mean square distance between the original points and their
projection is minimal. Accordingly, PCA is the optimal linear transformation for the
reconstruction of a data set.
Despite its widespread use, the e!ectiveness of PCA is limited by its global linearity. PCA

removes linear correlations among the data and is only sensitive to second order statistics.
It is, however, very common to deal with data sets where the relations among
variables are non-linear. If the data lie on a non-linear manifold, an important issue is thus
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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to have a technique which considers higher order statistics and allows for elimination of
dependencies not removed by PCA. This simple realization has prompted the development
of non-linear alternatives to PCA.
A few global non-linear variants of PCA were proposed. Principal curves were de"ned by

Hastie and Stuetzle [10]. A principal curve may be viewed as a non-linear generalization of
a principal component and is a smooth curve that passes through the middle of the data.
Finally, the notion of the principal curve was extended to that of principal surface. In the
early 1990s, a neural network based generalization of PCA was introduced in the chemical
engineering literature by Kramer [11]. Called non-linear principal component analysis
(NLPCA), Kramer implemented the solution using an autoassociative neural network with
"ve layers: input layer, mapping layer, bottleneck layer, demapping layer and output layer.
The outputs of the bottleneck layer are the non-linear principal components. Since then, it
has been applied to "nd low-dimensional representations of grayscale face images [12] or to
analyze climate data [13]. However, NLPCA su!ers from practical drawbacks: neural
networks with multiple sigmoidal hidden layers are di$cult to train and tend to be trapped
in local optima.
PCA and NLPCA try to describe all the data using the same global features. An

alternative paradigm is to capture data complexity by a combination of local linear PCA
projections. A local model implementation of PCA involves a two-step procedure:
a clustering of the data space into disjoint regions and the estimation of the principal axes
within each region. Local PCA has been exploited to identify intrinsic dimensions of data
[14, 15], for handwritten character recognition [16] and for dimension reduction of speech
[17] and images [17, 18].
Nevertheless, the authors are not aware of an application of a non-linear generalization

of PCA, either global or local, in the "eld of structural dynamics. The aim of this paper is
thus two-fold. On the one hand, one wishes to introduce the structural dynamicist to a local
non-linear extension of PCA, denoted as VQPCA, where VQ stands for vector
quantization. On the other hand, the performance of PCA and that of VQPCA are
compared using two illustrative examples.

2. PRINCIPAL COMPONENT ANALYSIS

PCA is a multivariate analysis technique that was "rst introduced by Pearson [19] in
1901 and developed independently by Hotelling [20] in 1933. It is also closely related to
proper orthogonal decomposition, also known as the Karhunen}Loève transform,
introduced in 1943 by Kosambi [21].
Given a set of observed n-dimensional data points x

�
with i"1, ... , m, the goal of PCA is

to reduce the dimensionality of the observed vector x
�
. This is realized by "nding r principal

axes p
�
with i"1, ..., r onto which the retained variance under projection is maximal. These

axes, denoted as principal components, are given by the eigenvectors associated with the
r largest eigenvalues of the covariance matrix

�"E[(x!�) (x!�)�] (1)

where E[)] is the expectation and �"E[x] is the mean of the data.
If the principal components are collected in a matrix P"[p

�
2 p

�
], then z

�
"P� (x

�
!�)

is a reduced r-dimensional representation of the observed vector x
�
. Among all linear

techniques, PCA provides the optimal reconstruction x�
�
"�#Pz

�
of x

�
in terms of the

quadratic reconstruction error �x�!x� �� .

� �
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It is worth pointing out that PCA is also closely related to singular value decomposition.
If the mean is subtracted from the data and if the data are collected in a matrix X (n rows
and m columns), then the left singular vectors of X, as eigenvectors of XX�, are the principal
components. The singular values indicate how the corresponding left singular vectors
participate.
As underlined in the introduction, PCA linearly decorrelates the data points, i.e.,

diagonalize the covariance matrix. However, decorrelation only yields statistical
independence under the assumption that the distribution is Gaussian.

3. A LOCAL PCA APPROACH: VQPCA

If the data have non-linear dependencies, for any given error threshold, PCA may retain
more dimensions (larger r) than a non-linear technique. Naturally enough, this has
motivated researchers to develop non-linear extensions of PCA.
This section aims to present a local alternative to PCA, denoted as VQPCA, where VQ

stands for vector quantization. The "rst application of a local PCA method dates back to
1971 and is due to Fukunaga and Olsen [14]. Since then, it has been applied successfully in
di!erent areas [15}17].
A local PCA approach implies the integration of two procedures:

(1) a clustering of the data space into distinct regions. VQPCA partitions the space by
vector quantization;

(2) the construction of separate low-dimensional co-ordinate systems in each local region
using PCA.

3.1. VECTOR QUANTIZATION

Vector quantization (VQ) is a classical technique for signal coding and data compression
[22]. Let X be a set of observed n-dimensional data points x

�
with i"1,2 , m. A q-level

vector quantizer is de"ned by a codebook C"(�
�
, 2 , �

�
), a partition S"(S

�
,2 , S

�
)

and a distortion function d (x, �). It is a mapping f that approximates each point x
�
in the set

X by a component �
�
of the codebookC: f (x

�
)"�

�
if x

�
3S

�
. A q-level quantizer is said to be

optimal if it minimizes the averaged distortion D"E[d(x, �)].
In his implementation of VQPCA, Kambhatla [17] makes use of VQ to de"ne the

regions for the local PCA. The algorithm to design the vector quantizer is based on an
approach of Lloyd [23] and is referred to as the generalized Lloyd algorithm [22]. The
codebook vectors �

�
and the regions S

�
satisfy Lloyd's optimality conditions:

(1) each region S
�
(with its corresponding codebook vector �

�
) corresponds to all x

�
that

lie closer to �
�
than to any other codebook vector (nearest-neighbor mapping).

Mathematically, S
�
"�x

�
� d(x

�
, �

�
)(d (x

�
, �

�
), ∀ kOj�;

(2) each codebook vector �
�
is placed at the centroid of the corresponding region S

�
.

For a distortion function based on Euclidean distance, the regions are convex sets called
Voronoi cells and the centroid of a region is the mean of the data points in this region
�
�
"E[x

�
�x

�
3S

�
].

Accordingly, the generalized Lloyd algorithm is as follows:

(1) given q a number of regions, initialize the codebook C from randomly selected points
in the data set X;
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Figure 1. (a) Distribution of the data; (b) clustering of the data. *, Voronoi cells; #, centroids.
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(2) compute the corresponding optimal partition following the "rst optimality condition;
(3) compute the corresponding optimal codebook following the second optimality

condition;
(4) iterate steps 2 and 3 until convergence.

The convergence is achieved when the fractional change in the averaged distortion
D between the kth and (k#1)th iterations is below some speci"ed threshold. It can be
argued that each iteration of the algorithm either reduces the distortion or leaves it
unchanged.
It is worth noticing that several variants of this algorithm exist, e.g., tree-searched VQ

and multistep VQ [22]. These variants aim to reduce the computation or memory
requirements but may compromise the performance relative to what could be achieved with
a standard VQ. Since the computational aspects are not an issue in this work, the basic
Lloyd algorithm is considered throughout this paper.
By way of illustration, the generalized Lloyd algorithm, with a distortion function based

on the Euclidean distance and the number of regions equal to 20, is applied on a set of 5000
two-dimensional random vectors chosen from a normal distribution with mean zero and
variance one. The distribution of the random vectors is displayed in Figure 1(a). Figure 1(b)
depicts the Voronoi cells S

�
together with their corresponding centroids �

�
.

3.2. DIMENSION REDUCTION BY LOCAL LINEAR MODELS

Consider again a set of observed n-dimensional data points x
�
with i"1, 2 , m. In order

to reduce the dimensionality of the vector x
�
, one needs to determine an encoding function f:

R�PR� such that z
�
"f (x

�
) is a compact r-dimensional representation of x

�
. Similarly,

a decoding function g: R�PR� has to be calculated such that x;
�
"g ( f (x

�
) ) is the

reconstruction of the initial vector x
�
.

In the present work, the purpose is to build low-dimensional co-ordinate systems in the
q local regions de"ned by the vector quantizer. If the local regions are small enough, the
data manifold is not curved much over the extent of the region and it may be locally
approximated as a hyperplane. In other words, a separate PCA model in each of the
q regions should be adequate. Instead of having single encoding and decoding functions,
a collection of functions f

�
( ) ) and g

�
( ) ) with i"1, 2 , q is obtained.
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3.3. VQPCA ALGORITHM

The VQPCA algorithm is an extension of a standard vector quantizer. VQPCA
partitions the input space into a set of regions and approximates each region by
a hyperplane de"ned by PCA, while a standard vector quantizer approximates each region
by a codebook vector. The VQPCA algorithm is:

(1) Partition R� into q disjoint regions S
�
, 2 , S

�
using the generalized Lloyd algorithm

with Euclidean distance as the distortion function.
(2) For each Voronoi cell S

�
and its corresponding centroid �

�
, estimate the local

covariance matrix

�
�
"

1

N
�

�
x���

(x!�
�
) (x!�

�
)�, (2)

where N
�
is the number of vectors mapped to S

�
. Next, compute the eigenvectors

(p
��
, 2 , p

��
) of each matrix �

�
.

(3) To reduce dimension of any vector x
�
, determine the cell S

�
which contains the vector

and project x
�
onto the r leading eigenvectors to obtain the local linear co-ordinates

z
�
"f

�
(x

�
)"[p

��
2 p

��
]�(x

�
!�

�
)"�

p�
��
(x

�
!�

�
)

�

p�
��
(x

�
!�

�
)� , if x

�
3S

�
. (3)

The compressed representation of x
�
consists of the index j of the Voronoi cell in

which x
�
lies and the r-dimensional vector z

�
. The data are reconstructed from this

representation according to

x;
�
"g

�
( f

�
(x

�
))"g

�
(z

�
)"�

�
#[p

��
,2 , p

��
]z

�
. (4)

The accuracy of the compressed representation is assessed using the normalized mean
square error (MSE)

MSE"E[�x!x; ��]/E[�x!E[x]��]. (5)

4. EXAMPLES

4.1. APPROXIMATION OF A NON-LINEAR NORMAL MODE

The utility of the VQPCA approach may be demonstrated with the following example.
Consider 1000 samples obtained from the free response of an undamped non-linear system
(Figure 2). This system has two degrees of freedom (d.o.f.) and a cubic sti!ness k

��
between

the wall and the "rst mass [24]. All the remaining sti!nesses k and k
	
are linear. For

m"k"1, k
	
"k

��
"15 and initial conditions [1; 0)918] on the displacements, the motion

is a single and synchronous non-linear mode, i.e., the system response is a one-dimensional
curve in the co-ordinate space.
As stated in reference [25], for the case of a synchronous non-linear normal mode

(NNM), the dominant proper orthogonal mode (i.e., principal component) represents an optimal
,t of a linear mode to the data on the non-linear normal mode in the sense that the distances of
data from the proper orthogonal mode axis are optimized. This is illustrated in Figure 3(a)
where the synchronous NNM and the dominant principal component are compared in the
co-ordinate space. The singular values normalized by their sum are equal to 0)840 and 0)160
indicating that the dominant principal component captures 84% of the energy.



Figure 2. Model of the 2-d.o.f. example. m"k"1 and k
	
"k

��
"15.
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Figure 3. 2-d.o.f. example. (a) **, Synchronous non-linear mode; ! ! !, dominant principal component;
(b) **, synchronous non-linear mode; ! ! !, dominant VQPCA mode, 10 cells.

TABLE 1

PCA and VQPCA applied to the 2-d.o.f. example

Number MSE (%) First singular Second singular
of regions 1 mode value value

1 (PCA) 3)50 0)840 0)160
3 0)21 0)900 0)100
5 4)04�10�� 0)931 0)069
10 2)31�10�� 0)964 0)036
15 5)49�10�� 0)975 0)025
20 1)82�10�� 0)981 0)019
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VQPCA is then applied on the same data set. The number of regions is varied from 3 to
20. The singular values are computed in each region, normalized by their sum and averaged
out over all the regions. All the results are listed in Table 1. The decrease in the MSE (5)
when the number of regions grows is expected and highlights the superiority of VQPCA
over PCA. It should also be noticed that the "rst singular value tends to approach 1, i.e.,



Figure 4. Model of the non-linear beam.

TABLE 2

PCA and VQPCA applied to the non-linear beam example

Number MSE (%) MSE (%) MSE (%) MSE (%)
of regions 1 mode 2 modes 3 modes 4 modes

1 (PCA) 31)75 9)15 3)53 0)010
5 17)45 7)30 1)52 0)009

10 12)34 5)09 1)18 0)008
20 6)72 2)85 0)83 0)006
30 5)69 2)08 0)60 0)004
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100% of the energy is captured, when the number of regions is increased. This enables one
to conclude that the data are aligned on a one-dimensional manifold while PCA is not.
The "rst mode given by VQPCA (10 cells) is shown in Figure 3(b) and compared with the

synchronous NNM. The VQPCA mode provides a close approximation to the non-linear
normal mode. Finally, it must be stated that for a "xed number of regions, the VQPCA
algorithm was run with di!erent initializations of the codebook. In this way, the sensitivity
of the generalized Lloyd algorithm to the starting point is tested. The results were never
signi"cantly in#uenced by the starting point.

4.2. RECONSTRUCTION OF DYNAMICAL RESPONSE

The second example chosen to demonstrate the application of the VQPCA algorithm is
the reconstruction of the dynamical response of a non-linear beam (Figure 4). This clamped
beam is modelled with seven beam elements and the local non-linearity k

��
is a spring that

exhibits a cubic sti!ness. The free vibration of the beam is simulated with an initial
displacement given by a static force F

�
applied at the end of the beam.

The data set consists of seven vertical accelerations measured along the beam. PCA
which is equivalent to VQPCA with a single Voronoi cell is "rst applied to the data. In
a second step, the data are modelled with VQPCA using a number of regions varied from
5 to 30. Table 2 summarizes the relative performance of PCA and VQPCA in terms of
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Figure 5. Reconstruction of the dynamical response of the non-linear beam: (**), system response;
(!! !), reconstructed response. (a) PCA 1 mode; (b) PCA 2 modes; (c) VQPCA 1 mode, 20 cells; (d) VQPCA
2 modes, 20 cells.
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compression accuracy measured by the MSE. Figure 5 shows the acceleration at the fourth
node reconstructed from one- and two-dimensional representations generated by both PCA
and VQPCA (20 cells).
It is clear from this "gure that VQPCA provides a more accurate representation of the

system response than PCA. This advantage is also re#ected in the errors reported in Table
2. For instance, for a unimodal representation, VQPCA with 20 cells attains about 80%
lower error than PCA and is still a better approximation than a bimodal PCA
representation.

5. CONCLUSION

Modelling complexity in the data by a combination of simple linear models is an
attractive paradigm. Accordingly, a local non-linear variant of PCA, denoted VQPCA, has
been proposed in this paper. The method "rst exploits vector quantization to cluster the
data space into disjoint regions. Then, a standard PCAmodel is built in each region de"ned
by the vector quantizer. Thus, VQPCA approximates the data distribution with a set of
local hyperplanes. The location and the distribution of this set capture the large-scale,
non-linear structure of the data, while co-ordinates on the hyperplanes capture the local
variations.
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VQPCA provides insight into the structure of a data set that PCA could not. Its
superiority over PCA has been demonstrated by two illustrative examples. It is well suited
for dimensionality reduction and for estimation of the intrinsic dimensionality. There are
other applications that deserve attention. PCA was used to monitor the condition of signals
during manufacture [26]. The non-linear models provided by VQPCA should provide
more accurate models of the undamaged data and hence improve the sensitivity and
speci"city for fault detection. PCA was also applied to identify and update non-linear
mechanical systems [7}9]. In this context, the modes given by VQPCA may be viewed as
promising features to analyze the behavior of the non-linear system. This will be studied in
further work.
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